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 Στερεό σώμα –κρούση – γ.α.τ. 

1. Η μη ομογενής ράβδος του σχήματος μάζας Μ = 4kg ,έχει μήκος  = 8m και μπορεί 

να στρέφεται ελεύθερα γύρω από οριζόντιο άξονα κάθετο στη ράβδο που διέρχεται 

από την άρθρωση στο σημείο Γ. Η ράβδος ισορροπεί αρχικά με τη βοήθεια αβαρούς μη 

εκτατού νήματος, δεμένο στο σημείο B, που απέχει απόσταση /4 από το άκρο της Α 

σχηματίζοντας γωνία φ = 30 με τη διεύθυνση της ράβδου. Στο άκρο Α της ράβδου είναι 

κολλημένο σώμα μικρών διαστάσεων μάζας m1 = 2 Kg.  

 

Δ1. Αν η τάση του νήματος ισούται με Ν, να υπολογίσετε την απόσταση του 

κέντρου μάζας της ράβδου από το άκρο Γ.  

Tη χρονική στιγμή t = 0 κόβουμε το νήμα οπότε το σύστημα ράβδος – σώμα m1 αρχίζει 

να περιστρέφεται. Να υπολογίσετε: 

Δ2. Τη ροπή αδράνειας του συστήματος ράβδου – σώματος  m1 ως προς τον άξονα 

περιστροφής του.  

Δ3. Το μέτρο της γωνιακής ταχύτητας του συστήματος όταν σχηματίζει γωνία          θ = 

30° με την αρχική θέση.  

 Όταν το σύστημα ράβδος – σώμα m1 γίνει κατακόρυφο, μέσω μιας μικρής έκρηξης το 

m1 εκτοξεύεται οριζόντια , ενώ η ράβδος συνεχίζει με την ίδια φορά και με γωνιακή 

ταχύτητα ίση με το 60% της γωνιακής του συστήματος, πριν την έκρηξη.  

 

 ℓ

 ℓ

400

3



 

2 

 

Δ4. Να υπολογίσετε το μέτρο της 

ταχύτητας του m1 αμέσως μετά την 

έκρηξη.   

Δ5. Το m1 συγκρούεται κεντρικά και 

πλαστικά με σώμα μάζας         m2 = 

4Kg,  δεμένο σε ελατήριο σταθεράς 

k = 400N/m που εκτελεί ΓΑΤ πλάτους 

Α1 = 0,2m, στο λείο οριζόντιο 

επίπεδο, τη στιγμή που το m2 έχει 

δυναμική ενέργεια ταλάντωσης ίση 

με την κινητική του, και θετική 

ταχύτητα και θέση, όπως φαίνεται 

στο σχήμα προς τα αριστερά .  

Υπολογίστε το πλάτος του 

συσσωματώματος.  Δίνεται               g 

= 10m/s2  ενώ η ροπή αδράνειας της 

μη ομογενούς ράβδου είναι     Icm = 
1

2
 M 2  . 

ΑΠ:     6m,   256kgm2 ,    1,25rad/s ,     14 2 m/s ,    
2

2
m  

 

 

 

Δ1. Για το στερεό σώμα που ισορροπεί ισχύει Στ=0. 

Δ2.  Ιολ =  Icm + Ιm1 

Δ3.  Εφαρμόζουμε Α.Δ.Μ.Ε. ή Θ.Μ.Κ.Ε., στη θέση φ = 30. 

Δ4.  Εφαρμόζουμε Α.Δ.Μ.Ε. ή Θ.Μ.Κ.Ε., στην κατακόρυφη θέση και ακολούθως την 

αρχή διατήρησης της στροφορμής κατά την έκρηξη Lπριν = Lμετα . 

Δ5.  Υπολογίζουμε την θέση όπου η δυναμική ενέργεια ταλάντωσης είναι ίση με την 

κινητική του και μετά βρίσκουμε με την Α.Δ.Ε.Τ. την ταχύτητα του σώματος μάζας m2.  

Ακολούθως  εφαρμόζουμε Α.Δ.Ο. κατά την πλαστική κρούση των m1 και m2 για να 

υπολογίσουμε την ταχύτητα του συσσωματώματος. Τέλος για τη νέα γ.α.τ. βρίσκουμε  

το πλάτος του συσσωματώματος με Α.Δ.Ε.Τ. 
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     Στερεό σώμα 

2. Σφαίρα ακτίνας R = 0,1m και μάζας Μ=1kg ισορροπεί στη θέση που φαίνεται στο 

σχήμα με την επίδραση αβαρούς μη εκτατού νήματος πάνω σε κεκλιμένο επίπεδο 

γωνίας κλίσης φ (με ημφ=0,7). Να  υπολογίσετε: 

Δ1. Το μέτρο της τάσης του νήματος που ασκείται στη σφαίρα. 

Αν τη χρονική στιγμή t = 0 κοπεί το νήμα, η σφαίρα αρχίζει να κυλιέται χωρίς να 

ολισθαίνει στο τραχύ κεκλιμένο επίπεδο. 

 

Δ2.  Να υπολογίσετε το μέτρο της επιτάχυνσης του κέντρου μάζας της σφαίρας. 

Όταν η σφαίρα έχει εκτελέσει Ν = 8/π περιστροφές το κεκλιμένο επίπεδο γίνεται λείο.  

Δ3. Εκείνη τη στιγμή να υπολογίσετε το μέτρο της ταχύτητας του κέντρου μάζας της 

σφαίρας. 

 Αν το σημείο στο οποίο το κεκλιμένο επίπεδο γίνεται  λείο, βρίσκεται σε ύψος          h = 

2,4m, τη στιγμή που η σφαίρα φτάνει στη βάση του κεκλιμένου επιπέδου, να 

υπολογίσετε: 

Δ4. Το συνολικό χρόνο κίνησης της σφαίρας και το ρυθμό μεταβολής της κινητικής 

ενέργειας της σφαίρας. 

Για τη σφαίρα η ροπή αδράνειας είναι Icm = MR2  . Δίνεται  g = 10m/s2  . 

ΑΠ: α) 3,5Ν, β)  5m/s2 , 2N , 4 m/s  γ)  8 m/s ii) 35,2J , iii:  48/35 s iv) 56J/s 

 
Δ1.  Για το στερεό σώμα που ισορροπεί ισχύει Στ=0, ΣFx =0  και ΣFy =0. 

Δ2.  Εφαρμόζουμε τον Θ.Ν.Μ. για την σύνθετη κίνηση της σφαίρας. 

Δ3. Βρίσκουμε τη γωνία  που περιστράφηκε η σφαίρα και με τη βοήθεια των 

κατάλληλων εξισώσεων κίνησης την ταχύτητα του κέντρου μάζας της σφαίρας. 

Δ4.  Εφαρμόζουμε τον Θ.Ν.Μ και τις εξισώσεις κίνησης στο λείο δάπεδο. 
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    Γ.α.τ. – χάσιμο επαφής 

3. To ένα άκρο κατακόρυφου ιδανικού ελατηρίου k = 

200N/m είναι στερεωμένο σε οριζόντιο δάπεδο. Στο άλλο 

άκρο του είναι σταθερά συνδεμένος δίσκος μάζας            

Μ = 1kg, πάνω στον οποίο είναι τοποθετημένο σώμα 

μάζας m = 1kg. Το σύστημα ισορροπεί. Πιέζουμε το 

σύστημα προς τα κάτω κατά Δl = 0,2m και το αφήνουμε 

ελεύθερο. Να υπολογίσετε: 

Δ1. Τις σταθερές επαναφοράς του συστήματος, του 

σώματος m και του δίσκου M. 

Δ2. Τη μέγιστη Νmax και την ελάχιστη Nmin  τιμή της 

κάθετης αντίδρασης που δέχεται το σώμα m από τον 

δίσκο Μ. 

Δ3. Τη συνάρτηση N(x) της κάθετης αντίδρασης που δέχεται το σώμα m από τον δίσκο 

Μ, με την απομάκρυνση από την θέση ισορροπίας.  

Δ4. Να αποδείξετε ότι το σώμα m θα χάσει την επαφή του με το δίσκο Μ.  

Δ5.  Το μέτρο της ταχύτητας και το μέτρο της επιτάχυνσης του σώματος στη θέση όπου 

χάνεται η επαφή.  

Θεωρήστε γνωστά ότι η επιτάχυνση της βαρύτητας είναι: g = 10m/s2  και ότι π2 =10. 

 

ΑΠ:   100N/m  ,100N/m,   10N, 30N ,   10+100x(SI),   3 m/s    , 10m/s2 

 

 

Δ1.  DM =Mω2  και Dm =mω2 

Δ2.  Εφαρμόζουμε τον Θ.Ν.Μ  ΣFταλ  = - Dmχ στην ανώτερη και κατώτερη θέση. 

Δ3. Εφαρμόζουμε τον Θ.Ν.Μ  ΣFταλ  = - Dmχ στην τυχαία θέση. 

Δ4.Υπολογίζουμε τη θέση όπου το σώμα m θα χάσει την επαφή του Ν=0. 

Δ5.  Βρίσκουμε με την Α.Δ.Ε.Τ. την ταχύτητα του σώματος μάζας m  στη θέση όπου το 

σώμα m θα χάσει την επαφή. Μετά  α=- ω2χ. 
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Γ.α.τ. - κρούση 

4. Σώμα Σ1 με μάζα m1 κινείται σε οριζόντιο επίπεδο ολισθαίνοντας προς άλλο σώμα Σ2 

με μάζα m2 = 2 m1, το οποίο αρχικά είναι ακίνητο. Έστω υ0 η ταχύτητα που έχει το σώμα 

Σ1 τη στιγμή t0 = 0 και ενώ βρίσκεται σε απόσταση d = 1 m από το σώμα Σ2. Αρχικά, 

θεωρούμε ότι το σώμα Σ2 είναι ακίνητο πάνω στο επίπεδο δεμένο στο ένα άκρο 

οριζόντιου ιδανικού ελατηρίου με αμελητέα μάζα και σταθερά ελατηρίου k, και το 

οποίο έχει το φυσικό του μήκος ℓ0. Το δεύτερο άκρο του ελατηρίου είναι στερεωμένο 

σε ακλόνητο τοίχο, όπως φαίνεται στο σχήμα: 

 

 

Αμέσως μετά τη κρούση, που είναι κεντρική και ελαστική, το σώμα Σ1 αποκτά ταχύτητα 

με μέτρο υ1΄ = m/s και φορά αντίθετη της αρχικής ταχύτητας. 

Δίνεται ότι ο συντελεστής τριβής ολίσθησης των δύο σωμάτων με το οριζόντιο επίπεδο 

είναι μ = 0,5 και ότι η επιτάχυνση της βαρύτητας είναι g = 10 m/s2. 

Δ1.  Να υπολογίσετε την αρχική ταχύτητα υ0 του σώματος Σ1.  

Δ2. Να υπολογίσετε το ποσοστό της κινητικής ενέργειας που μεταφέρθηκε από το 

σώμα Σ1 στο σώμα Σ2 κατά την κρούση.  

Δ3. Να υπολογίσετε το συνολικό χρόνο κίνησης του σώματος Σ1 από την αρχική χρονική 

στιγμή t0 μέχρι να ακινητοποιηθεί τελικά. 

Δ4. Να υπολογίσετε τη μέγιστη συσπείρωση του ελατηρίου, αν δίνεται ότι m2 = 1kg και 

k = 105 N/m. 

Θεωρήστε ότι η χρονική διάρκεια της κρούσης είναι αμελητέα και ότι τα δύο σώματα 

συγκρούονται μόνο μία φορά. 

Δίνεται: 10≅3,2 

ΑΠ: 10m/s,   88,89%   ,    0,72s,   ( 12/21)m      

 

Δ1. Εφαρμόζουμε Θ.Μ.Κ.Ε. για το σώμα Σ1 πριν την κρούση. 

Δ2.  Π = ΔΚ1 /Κ1 

Δ3.   Εφαρμόζουμε τον Θ.Ν.Μ και τις εξισώσεις κίνησης για το σώμα Σ1 πριν και μετά 

την ελαστική κρούση. 

 Δ4.Εφαρμόζουμε Θ.Μ.Κ.Ε. για το σώμα Σ2 μετά την ελαστική κρούση.
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    Στερεό σώμα – κρούση -  γ.α.τ. 

5. Το σύστημα των δύο ομογενών ράβδων ΟΑ μήκους  ℓ1
= 0,8 m και ΟΒ μήκους  ℓ2

= 

0,4 m μάζες m1 = 0,4 kg και    αντίστοιχα είναι κολλημένες μεταξύ τους και 

σχηματίζουν ορθή γωνία, ενώ συγκρατούνται ακίνητες με τη βοήθεια αβαρούς μη 

εκτατού νήματος που είναι δεμένο στο άκρο Α της μιας ράβδου, ενώ το άλλο άκρο του 

είναι στερεωμένο σε μάζας          . Το σώμα μάζας m3 βρίσκεται πάνω σε λείο 

οριζόντιο επίπεδο, στερεωμένο στο ένα άκρο οριζόντιου ελατηρίου σταθεράς k = 20 

N/m. Τη χρονική στιγμή t = 0 κόβεται το νήμα και οι ράβδοι αρχίζουν να 

περιστρέφονται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα που διέρχεται από το 

κοινό άκρο τους Ο μέχρι που η ράβδος ΟΑ γίνεται τελικά οριζόντια.  

 

 
Να υπολογίσετε: 

Δ1. Η μάζα m2 της ράβδου. 

Δ2. Η ολική ροπή αδράνειας     του συστήματος των δύο ράβδων.  

Δ3. Το μέτρο της γωνιακής επιτάχυνσης του συστήματος των δύο ράβδων αμέσως μετά 

την κοπή του νήματος και ενώ η ράβδος ΟΒ διατηρείται ακόμα οριζόντια. 

Δ4. Τη χρονική εξίσωση της απομάκρυνσης από τη θέση ισορροπίας της ταλάντωσης 

που εκτελεί το σώμα m3 μετά την κοπή του νήματος, αν λάβετε ως θετική φορά προς τα 

δεξιά. 

Δίνεται η ροπή αδράνειας ομογενούς ράβδου ως προς άξονα κάθετο σ’ αυτήν που 

διέρχεται από το κέντρο μάζας της δίνεται από τη σχέση
 
I cm =

1

12
Mℓ2  και η επιτάχυνση 

της βαρύτητας g = 10 m/s2 

ΑΠ:           ,             ,           , x = 0,05hm(20t +
p

2
)  (S.I.) 

 
 
Δ1. Εφαρμόζουμε τον Θ.Ν.Μ ισορροπεί, οπότε  ισχύει Στ=0. 

Δ2. Ιολ = Ι1 + Ι2  

Δ3.  Εφαρμόζουμε τον Θ.Ν.Μ για το σύστημα των δύο ομογενών ράβδων την t=0. 
Δ4.  Υπολογίζουμε τα φυσικά μεγέθη ω, Α(ΑΔΕΤ), φ0(αρχικές συνθήκες). 
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Γ.α.τ.- Doppler 

6.  Σώμα          είναι στερεωμένο στο άκρο οριζόντιου ελατηρίου           .  

Το σώμα εκτελεί ΓΑΤ σε λείο οριζόντιο δάπεδο με            .  Τη στιγμή που 

βρίσκεται στη θέση όπου ο ρυθμός μεταβολής της ορμής του είναι μέγιστος, 

προσκολλάται πάνω του σώμα που φέρει διαπασών συνολικής μάζας          

κινούμενο κατακόρυφα. 

Δ1. α. Να υπολογίσετε το νέο πλάτος    

β. αν για               να βρεθεί η  ( ) 

  Να υπολογίσετε τη συχνότητα του ήχου που ακούει ακίνητος παρατηρητής που 

βρίσκεται στη διεύθυνση της ΓΑΤ σε απόσταση 30 cm κατά τη θετική κατεύθυνση από 

τη Θ.Ι.Τ 

Δ2.  ακριβώς μετά την κρούση 

Δ3.  όταν το συσσωμάτωμα διέρχεται από την ΘΙΤ για 1η φορά.  Η συχνότητα του 

διαπασών είναι             ενώ η ταχύτητα του ήχου            . 

Δ4.  Αν το σώμα m  και το διαπασών δεν είναι κολλημένα αλλά απλώς ακουμπάνε, 
ποιος είναι ο ελάχιστος συντελεστής στατικής τριβής ώστε το σώμα που έχει το 
διαπασών να μην ολισθαίνει πάνω στο Μ. 
 
Δίνεται            

 
 

ΑΠ:   
 

 
   ,    ( )  

 

 
  (   

 

 
),            ,    

 

 
 

 

 
 
Δ1. Βρίσκουμε  το πλάτος του συσσωματώματος με Α.Δ.Ε.Τ. Υπολογίζουμε την φ0 
(αρχικές συνθήκες). 
 
Δ2, Δ3. Εφαρμόζουμε το τύπο του Doppler προσέχοντας την κατεύθυνση της ταχύτητας. 
 
Δ4. Εφαρμόζουμε τον Θ.Ν.Μ  ΣFταλ  = - Dmχ  για το διαπασών

M

m

UA=0

-A +A (t=0)O x
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       Σύνθετη γ.α.τ. – τρέχον κύμα 
7.    Υλικό σημείο εκτελεί ταυτόχρονα δύο ταλαντώσεις ίδιας θέσης ισορροπίας, 

ίδιας διεύθυνσης, με εξισώσεις : y1 = 0.04ημωt  και  y2 =0.02ημ(ωt+π) στο SI. 
 Η κινητική  ενέργεια της σύνθετης ταλάντωσης μηδενίζεται 10 φορές κάθε 2,5s. 

Δ1. Να υπολογίσετε την εξίσωση της σύνθετης ταλάντωσης. 

  Το υλικό σημείο είναι τμήμα μιας ομογενούς, οριζόντιας, τεντωμένης χορδής που 

βρίσκεται στον θετικό ημιάξονα, πολύ μακριά από την αρχή των αξόνων και της 

προκαλεί εγκάρσιο, τρέχον κύμα που διαδίδεται προς την αρνητική  κατεύθυνση. Η 

ταχύτητα διάδοσης του κύματος είναι 4m/s. Τη χρονική στιγμή t=0 ένα σημείο Ο 

που έχει επιλεγεί ως αρχή των αξόνων (χ=0) αρχίζει να ταλαντώνεται. Θεωρώντας 

ότι κατά τη διάδοση του κύματος δεν χάνεται ενέργεια να υπολογίσετε:  

Δ2. Την εξίσωση ταλάντωσης σημείου Μ με συντεταγμένη θέσης χΜ =2m. 

Δ3. Να σχεδιαστεί το διάγραμμα της φάσης του κύματος σε σχέση με τη 

συντεταγμένη θέσης (φ-χ), τη χρονική στιγμή t=1,5s. 

Δ4. Να βρεθούν οι συντεταγμένες θέσης των σημείων της χορδής, τα οποία 

βρίσκονται σε απόσταση μικρότερη από 6m από την αρχή των αξόνων Ο, τα οποία 

τη χρονική στιγμή t=2s, έχουν απομάκρυνση y=-2cm. 

 
ΑΠ:  0.02ημ4πt    ,   0.02ημ(4πt + 2π),     -4,5m, -2,5m, -0,5m , 1,5m  , 3,5m,  5,5m.   
 

 
 
Δ1. Βρίσκουμε την διαφορά φάσης Δφ και υπολογίζουμε την εξίσωση της σύνθετης 
ταλάντωσης. 
Δ2. Υπολογίζουμε τα μεγέθη λ, Α,ω και γράφουμε την εξίσωση του τρέχοντος 
κύματος   y=Aημ2π(ft +x/λ). 
Δ3. Σχεδιάζουμε το διάγραμμα της φάσης του κύματος φ=2π(ft +x/λ) τη χρονική 
στιγμή t=1,5s. 
Δ4. Σχεδιάζουμε το στιγμιότυπο y(x) την t=2s και υπολογίζουμε τα σημεία από τη 
θέση χ=-6m έως χ=+6m που έχουν απομάκρυνση y=-2cm. 
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Γ.α.τ. – κρούση – φθίνουσα ταλάντωση 

8. Ομογενές, ιδανικό ελατήριο σταθεράς k=25N/m κόβεται σε δύο ίσα τμήματα. 

Ακολούθως τα δύο τμήματα τα συνδέουμε παράλληλα μεταξύ τους, σε πολύ μικρό 

σώμα Σ1 μάζας m1 όπως στο σχήμα. To σύστημα αναρτάται στην οροφή 

αεροστεγούς  δοχείου, όπου έχουμε στερεώσει ακλόνητα το ένα άκρο των ιδανικών 

ελατηρίων, ενώ στο ελεύθερο άκρο τους βρίσκεται στερεωμένο το σώμα Σ1. Το 

σωμα Σ1 είναι ακίνητο, καθώς τα ελατήρια συγκρατούνται συσπειρωμένα κατά      Δl 

= 0,3 m σε σχέση με το φυσικό τους μήκος, με τη βοήθεια αβαρούς μη εκτατού 

νήματος. Η πίεση στο δοχείο του σχήματος είναι σχεδόν μηδενική.  

Τη χρονική στιγμή t = 0, κόβουμε το νήμα οπότε το σώμα Σ1 αρχίζει να εκτελεί απλή 

αρμονική ταλάντωση με συχνότητα f=(5/π)Ηz . 

Δ1. Να υπολογίσετε την μάζα m1 του σώματος Σ1. 

Δ2. Αν ως θετική φορά της ταλάντωσης λάβετε προς τα πάνω, να γράψετε τις 

χρονικές εξισώσεις της δυναμικής UT = f(t) και της κινητικής ενέργειας ΚT = f(t) της 

ταλάντωσης που πραγματοποιεί και να σχεδιάσετε τα διαγράμματά τους σε κοινό 

σύστημα βαθμολογημένων αξόνων. 

  Στην ίδια κατακόρυφο με το σώμα Σ1 και σε κατακόρυφη απόσταση h = (1/9) m 

κάτω από τη θέση ισορροπίας της ταλάντωσής του, δεύτερο σώμα Σ2 μάζας            

m2 = 3 kg εκτοξεύεται κατακόρυφα προς τα πάνω με αρχική ταχύτητα μέτρου         u0 

= 2 m/s. Τα δύο σώματα Σ1 και Σ2 δεν ξεκινούν ταυτόχρονα, ενώ συγκρούονται 

κεντρικά και πλαστικά στη θέση ισορροπίας του Σ1, τη στιγμή που το Σ1 φτάνει σ' 

αυτήν για πρώτη φορά και το Σ2 βρίσκεται 

ακόμα στη φάση της ανόδου του. To Σ2 μετά 

την κρούση, φθάνει μέχρι το κέντρο μάζας 

του Σ1 . Τη στιγμή της κρούσης μηδενίζουμε 

και πάλι το χρόνο (t = 0).  

Δ3. Να γράψετε τη χρονική εξίσωση του 

ρυθμού μεταβολής της ταχύτητας της 

ταλάντωσης του συσσωματώματος. 

Τη  χρονική στιγμή t = 1,6π s, μετά την 
πλαστική κρούση, αυξάνουμε απότομα την 
πίεση του δοχείου με αποτέλεσμα στο 
σύστημα να αρχίσει να ασκείται δύναμη της 
μορφής    Fαπ = - bu, όπου u η ταχύτητα της 
ταλάντωσης και b θετική σταθερά, οπότε το πλάτος της ταλάντωσης μειώνεται κατά 
20% σε κάθε περίοδό της. 

Δ4. Να υπολογίσετε το έργο της δύναμης Fαπ στη διάρκεια της πρώτης περιόδου 

της φθίνουσας ταλάντωσης.  Δίνεται η επιτάχυνση της βαρύτητας g = 10 m/s2.  
ΑΠ:  1kg,  KT=8ημ10t (S.I), , UT=8συν10t(S.I), α= -7,5συν5t(S.I),  -1,62J. 

m1 

m2 
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Δ1. Ελατήρια σε σειρά kολ=k1k2/(k1+k2) και ελατήρια παράλληλα kολ=k1+k2  
Δ2. Βρίσκουμε  το πλάτος του σώματος Σ1 με Α.Δ.Ε.Τ. Υπολογίζουμε την φ0 (αρχικές 
συνθήκες: t=0 x=+A) και την κυκλική συχνότητα. 
Δ3.  Υπολογίζουμε ενεργειακά τις ταχύτητες των σωμάτων πριν την πλαστική 
κρούση και ακολούθως εφαρμόζουμε ΑΔΟ κατά την πλαστική κρούση. Βρίσκουμε 
την νέα θέση ισορροπίας για το συσσωμάτωμα και επαναλαμβάνουμε τις 
συμβουλές στο Δ2. Τέλος γράφουμε την εξίσωση της επιτάχυνσης α=ω2Αημ(ωt+φ0). 
Δ4. Wαπ = ΕΑΡΧ - ΕΤΕΛ 

 
 
 

    Σύνθετη γ.α.τ. - στάσιμο κύμα 

9. Ένα σκοινί διατηρείται οριζόντιο και καλά τεντωμένο. Το ένα του άκρο 

παραμένει συνεχώς ακίνητο. Ένας μηχανισμός αναγκάζει το άλλο άκρο να εκτελεί 

ταυτόχρονα δύο ΓΑΤ ίδιας θέσης ισορροπίας, ίδιας διεύθυνσης  με εξισώσεις: 

      (
 
   

 
 )

    √   (
 
   

 
 )
    {
    
       

} 

Διαπιστώνουμε ότι στη χορδή σχηματίζεται μετά από λίγο στάσιμο κύμα. Δύο 

σημεία που είναι συνεχώς ακίνητα απέχουν 2,4 m ενώ μεταξύ τους παρεμβάλλονται 

4 κοιλίες. Να βρείτε: 

Δ1.  Την εξίσωση της σύνθετης ταλάντωσης     ( ) 

Δ2.  Την ταχύτητα  διάδοσης κυμάτων    

Δ3.  Αν η χορδή έχει μήκος 6,3 m πόσοι δεσμοί παράγονται; 

Δ4.  Πόσο της % πρέπει να μεταβληθεί η συχνότητα της ταλάντωσης για να 

σχηματιστούν  4 δεσμοί. 

ΑΠ:        
 
   ,   

 

  
   ,              ,   66,67% 

 

 
 
Δ1. Βρίσκουμε την διαφορά φάσης Δφ και υπολογίζουμε την εξίσωση της σύνθετης 
ταλάντωσης. 
Δ2.    =λf  ,   ενώ οι δεσμοί απέχουν ακέραιο πολλαπλάσιο του λ/2 (βοηθάει η 
χρήση ενός στιγμιότυπου) 
Δ3.  L= (λ1/4) +(ν-1)λ1/2 = (υ/4f1) +(ν-1)υ/2f1  
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Δ4.  L= (λ2/4) +(ν-1)λ2/2 = (υ/4f2) +(ν-1)υ/2f2  
        Π= (Δf/f1)100% 


